Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(19): 13034-13045, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38698544

RESUMO

Copper-based materials exhibit significant potential as catalysts for electrochemical CO2 reduction, owing to their capacity to generate multicarbon hydrocarbons. The molecular functionalization of Cu electrodes represents a simple yet powerful strategy for improving the intrinsic activity of these materials by favoring specific reaction pathways through the creation of tailored microenvironments around the surface active sites. However, despite its success, comprehensive mechanistic insights derived from experimental techniques are often limited, leaving the active role of surface modifiers inconclusive. In this work, we show that N-heterocyclic carbene-carbodiimide-functionalized Cu catalysts display a remarkable activity for multicarbon product formation, surpassing bare Cu electrodes by more than an order of magnitude. These hybrid catalysts operate efficiently using an electrolyzer equipped with a gas diffusion electrode, achieving a multicarbon product selectivity of 58% with a partial current density of ca. -80 mA cm-2. We found that the activity for multicarbon product formation is closely linked to the surface charge that accumulates during electrocatalysis, stemming from surface intermediate buildup. Through X-ray photoelectron spectroscopy, we elucidated the role of the molecular additives in altering the electronic structure of the Cu electrodes, promoting the stabilization of surface CO. Additionally, in situ Raman measurements established the identity of the reaction intermediates that accumulate during electrocatalysis, indicating preferential CO binding on Cu step sites, known for facilitating C-C coupling. This study underscores the significant potential of molecular surface modifications in developing efficient electrocatalysts for CO2 reduction, highlighting surface charge as a pivotal descriptor of multicarbon product activity.

2.
Nat Commun ; 14(1): 844, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36792630

RESUMO

Copper offers unique capability as catalyst for multicarbon compounds production in the electrochemical carbon dioxide reduction reaction. In lieu of conventional catalysis alloying with other elements, copper can be modified with organic molecules to regulate product distribution. Here, we systematically study to which extent the carbon dioxide reduction is affected by film thickness and porosity. On a polycrystalline copper electrode, immobilization of porous bipyridine-based films of varying thicknesses is shown to result in almost an order of magnitude enhancement of the intrinsic current density pertaining to ethylene formation while multicarbon products selectivity increases from 9.7 to 61.9%. In contrast, the total current density remains mostly unaffected by the modification once it is normalized with respect to the electrochemical active surface area. Supported by a microkinetic model, we propose that porous and thick films increase both local carbon monoxide partial pressure and the carbon monoxide surface coverage by retaining in situ generated carbon monoxide. This reroutes the reaction pathway toward multicarbon products by enhancing carbon-carbon coupling. Our study highlights the significance of customizing the molecular film structure to improve the selectivity of copper catalysts for carbon dioxide reduction reaction.

3.
Langmuir ; 37(24): 7442-7448, 2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-34110835

RESUMO

Water/oil/water (w/o/w) double emulsions (DEs) are multicompartment structures which can be used in many technological applications and in fundamental studies as models of cell like microreactors or templates for other materials. Herein, we study the flow dynamics of water/oil/water double emulsions generated in a microfluidic device and stabilized with the phospholipid 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC). We show that by varying the concentration of lipids in the oil phase (chloroform) or by modulating the viscosity of the aqueous continuous phase, the double emulsions under flow exhibit a rich dynamic behavior. An initial deformation of the double emulsions is followed by tube extraction at the rear end, relative to the flow direction, resulting in pinch off at the tube extremity by which small aqueous compartments are released. These compartments are phospholipid vesicles as deduced from fluorescence experiments. The overall process can thus be of help to shed light on the mechanical aspects of phenomena such as the budding and fusion in cell membranes.


Assuntos
Microfluídica , Fosfolipídeos , Emulsões , Viscosidade , Água
4.
Chem Commun (Camb) ; 56(79): 11771-11774, 2020 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-32966401

RESUMO

Stable cell-like multisomes encapsulating the chemical oscillator Belousov-Zhabotinsky were engineered and organized in a linear network of diffusively-coupled chemical oscillators by using microfluidics. The multi-compartmentalization and the spatial configuration resulted in a new global synchronization scenario. After an initial induction interval, all the oscillators started to pulsate in phase with a halved period with respect to the natural one.

5.
J Phys Chem Lett ; 11(6): 2014-2020, 2020 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-32078774

RESUMO

Networks of diffusively coupled inorganic oscillators, confined in nano- and microcompartments, are effective for predicting and understanding the global dynamics of those systems where the diffusion of activatory or inhibitory signals regulates the communication among different individuals. By taking advantage of a microfluidic device, we study the dynamics of arrays of diffusively coupled Belousov-Zhabotinsky (BZ) oscillators encapsulated in water-in-oil single emulsions. New synchronization patterns are induced and controlled by modulating the structural and chemical properties of the phospholipid-based biomimetic membranes via the introduction of specific dopants. Doping molecules do not alter the membrane basic backbone, but modify the lamellarity (and, in turn, the permeability) or interact chemically with the reaction intermediates. A transition from two-period clusters showing 1:2 period-locking to one-period antiphase synchronization is observed by decreasing the membrane lamellarity. An unsynchronized scenario is found when the dopant is able to interfere with chemical communication by reacting with the chemical messengers.

6.
Chemistry ; 26(14): 3034-3038, 2020 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-31943389

RESUMO

Molecular catalysts have been shown to have high selectivity for CO2 electrochemical reduction to CO, but with current densities significantly below those obtained with solid-state materials. By depositing a simple Fe porphyrin mixed with carbon black onto a carbon paper support, it was possible to obtain a catalytic material that could be used in a flow cell for fast and selective conversion of CO2 to CO. At neutral pH (7.3) a current density as high as 83.7 mA cm-2 was obtained with a CO selectivity close to 98 %. In basic solution (pH 14), a current density of 27 mA cm-2 was maintained for 24 h with 99.7 % selectivity for CO at only 50 mV overpotential, leading to a record energy efficiency of 71 %. In addition, a current density for CO production as high as 152 mA cm-2 (>98 % selectivity) was obtained at a low overpotential of 470 mV, outperforming state-of-the-art noble metal based catalysts.

7.
Nat Commun ; 10(1): 3602, 2019 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-31399585

RESUMO

Molecular catalysts that combine high product selectivity and high current density for CO2 electrochemical reduction to CO or other chemical feedstocks are urgently needed. While earth-abundant metal-based molecular electrocatalysts with high selectivity for CO2 to CO conversion are known, they are characterized by current densities that are significantly lower than those obtained with solid-state metal materials. Here, we report that a cobalt phthalocyanine bearing a trimethyl ammonium group appended to the phthalocyanine macrocycle is capable of reducing CO2 to CO in water with high activity over a broad pH range from 4 to 14. In a flow cell configuration operating in basic conditions, CO production occurs with excellent selectivity (ca. 95%), and good stability with a maximum partial current density of 165 mA cm-2 (at -0.92 V vs. RHE), matching the most active noble metal-based nanocatalysts. These results represent state-of-the-art performance for electrolytic carbon dioxide reduction by a molecular catalyst.

8.
Science ; 365(6451): 367-369, 2019 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-31346062

RESUMO

Practical electrochemical carbon dioxide (CO2) conversion requires a catalyst capable of mediating the efficient formation of a single product with high selectivity at high current densities. Solid-state electrocatalysts achieve the CO2 reduction reaction (CO2RR) at current densities ≥ 150 milliamperes per square centimeter (mA/cm2), but maintaining high selectivities at high current densities and efficiencies remains a challenge. Molecular CO2RR catalysts can be designed to achieve high selectivities and low overpotentials but only at current densities irrelevant to commercial operation. We show here that cobalt phthalocyanine, a widely available molecular catalyst, can mediate CO2 to CO formation in a zero-gap membrane flow reactor with selectivities > 95% at 150 mA/cm2 The revelation that molecular catalysts can work efficiently under these operating conditions illuminates a distinct approach for optimizing CO2RR catalysts and electrolyzers.

9.
RSC Adv ; 9(57): 33429-33435, 2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-35529139

RESUMO

Surfactant stabilized water/oil/water (w/o/w) double emulsions have received much attention in the last years motivated by their wide applications. Among double emulsions, those stabilized by phospholipids present special interest for their imitation of artificial cells, allowing the study of the effect of confining chemical reactions in biomimetic environments. Upon evaporation of the oil shell, phospholipid stabilized double emulsions can also serve as templates for giant vesicles. In this context, general assumptions have been made on the self-assembly and structural organization/arrangement of amphiphilic molecules, at the aqueous/oil liquid interface. However, to the best of our knowledge, no detailed evidence of the interfacial structuring have been reported. In this paper, w/o/w double emulsions formulated using the phospholipid 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and a mixture of chloroform and cyclohexane as the oil phase were produced using a microfluidic device. To obtain information on the phospholipid arrangement, the w/o/w interface was investigated by spatially resolved micro-focusing SAXS. We observed that (i) the basic units forming both the w/o and o/w interfaces were oil-swollen DMPC bilayers, arranged into a substantially disordered shell of ∼45 µm thickness surrounding the internal oil phase; (ii) the evaporation process was slow, i.e. in the order of one hour at 50 °C and (iii) oil evaporation led to a shrinkage of the interfacial shell, but not to an increase of the ordering of the lipid bilayers. Interestingly, no stacked DMPC bilayers were observed during the evaporation process, as shown by the absence of Bragg's peaks in the SAXS intensity profiles.

10.
Langmuir ; 33(36): 9100-9105, 2017 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-28816051

RESUMO

Water-in-oil (w/o) simple emulsions are dispersed microconfined systems that find applications in many areas of advanced materials and biotechnology, such as the food industry, drug delivery, and cosmetics, to name but a few. In these systems, the structural and chemical properties of the boundary layer at the w/o interface are of paramount importance in determining functionality and stability. Recently, microfluidic methods have emerged as a valuable tool for fabricating monodisperse emulsion droplets. Because of the intrinsic flexibility of microfluidics, different interfaces can be obtained, and general principles governing their stability are needed to guide the experimental approach. Herein, we investigate the structural characteristics of the region encompassing the liquid/liquid (L/L) interface of w/o emulsions generated by a microfluidic device in the presence of phospholipid 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and other intercalating amphiphiles (dopants) using microfocused small-angle X-rays scattering (µ-SAXS). We show that phospholipids provide a stable and versatile boundary film of ∼100 µm whose basic units are swollen and uncorrelated DMPC bilayers. The internal arrangement of this interfacial film can be tuned by adding molecules with a different packing parameter, such as cholesterol, which is able to increase the stiffness of the lipid membranes and trigger interbilayer correlation.

11.
Lab Chip ; 17(7): 1179-1189, 2017 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-28239705

RESUMO

Chemical communication leading to synchronization and collective behaviour of dynamic elements, such as cell colonies, is a widespread phenomenon with biological, physical and chemical importance. Such synchronization between elements proceeds via chemical communication by emmision, interdiffusion and reception of specific messenger molecules. On a lab scale, these phenomena can be modeled by encapsulating an oscillating chemical reaction, which serves as a signal (information) sender/receiver element, inside microcompartments such as droplet emulsions, liposomes and polymersomes. Droplets can thus be regarded as single units, able to generate chemical messengers that diffuse in the environment and hence can interact with other compartments. The Belousov-Zhabotinsky (BZ) reaction is a well-known chemical oscillator largely used as a model for complex nonlinear phenomena, including chemical, physical and biological examples. When the BZ-reaction is encapsulated inside microcompartments, its chemical intermediates can serve as messengers by diffusing among different microcompartments, to trigger specific reactions leading to a collective behavior between the elements. The geometry and constitution of the diffusion pathways play an important role in governing the collective behaviour of the system. In this context, microfluidics is not only a versatile tool for mastering the encapsulation process of the BZ-reaction in monodisperse microcompartments, but also for creating geometries and networks with well defined boundaries. The individual compartments can be engineered with selected properties using different surfactants in the case of simple emulsions, or with specific membrane properties in the case of liposomes. Furthermore, it enables the arrangement of these microcompartments in various geometric configurations, where the diffusive coupling pathways between individual compartments are both spatially and chemically well-defined. In this tutorial paper, we review a number of articles reporting various approaches to generate networks of compartmentalized Belousov-Zhabotinsky (BZ) chemical oscillators using microfluidics. In contrast to biological cellular networks, the dynamical characteristics of the BZ-reaction is well-known and, when confined in microcompartments arranged in different configurations with a pure interdiffusive coupling, these communicative microreactors can serve to mimic various types of bio-physical networks, aiding to comprehend the concept of chemical communication.

12.
J Phys Chem B ; 119(32): 10224-30, 2015 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-26176333

RESUMO

Compartmentalized in liposome arrays, the Belousov-Zhabotinsky (BZ) oscillatory reaction might represent a good model for biochemical networks. In order to engineer such liposomes, we used small-angle X-ray scattering (SAXS) to study the effect of individual BZ reactant as well as of the entire BZ mixture on the structural properties of lipid layer(s) formed by 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) phospholipids in aqueous media. These properties were compared with those of lipid layers doped with myristic acid (Myr-A), sodium tetradecyl sulfate (STS), and cholesterol (CHOL). In parallel, the effect on the BZ reaction exerted by doped DMPC liposomes was investigated by UV-vis spectroscopy, followed by image analysis of the recorded time series. SAXS experiments showed that chemical species involved in the BZ reaction bring small changes to the internal structure of DMPC bilayers. However, ferroin can reduce the liposome lamellarity by being adsorbed on the surface of lipid layers. Also, the presence of charged dopants such as STS and TA tends to reduce the lamellarity of liposomes, while CHOL brings marked changes in the BZ system due to chemical reaction with oxidant species. In particular, an increase of the oscillation frequency is observed when the BZ reaction is carried out in the presence of CHOL-DMPC liposomes. For this behavior, a possible explanation supported by numerical simulations is bromination of CHOL double bonds by BZ intermediates.

13.
Langmuir ; 31(15): 4443-52, 2015 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-25849849

RESUMO

A simple, direct, and versatile scanning electrochemical microscopy (SECM) approach for local carboxylation of multilayered graphene on nickel is demonstrated, in which carbon dioxide serves as the carboxylation agent under reductive conditions in N,N-dimethylformamide. The use of SECM gives control over both the spatial dimensions and the degree of carboxylation. While the pattern size, in general, is governed by the dimension of the SECM tip, the degree of modification, expressed as the surface coverage of carboxylate groups introduced at the graphene substrate, is found to be controlled by the electrolysis time. This is supported by electrochemical measurements, two-dimensional X-ray photoelectron spectroscopy, Raman spectroscopy mapping, and He ion microscopy. Surprisingly, intercalation of the supporting electrolyte in the multilayered graphene on nickel occurs to a relatively small extent when compared to corresponding results obtained in previously described carboxylations of this kind of multilayered graphene.

14.
Langmuir ; 29(44): 13595-604, 2013 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-24144237

RESUMO

A versatile method based on electrografting of aryldiazonium salts was used to introduce covalently attached initiators for atom transfer radical polymerization (ATRP) on glassy carbon surfaces. Polymer brushes of ferrocenylmethyl methacrylate were prepared from the surface-attached initiators, and these films were thoroughly analyzed using various techniques, including X-ray photoelectron spectroscopy (XPS), infrared reflection-absorption spectroscopy (IRRAS), ellipsometry, and electrochemistry. Of particular interest was the electrochemical characterization of the electron transfer through the diazonium-based initiator layer to the redox centers in the polymer brush films. It was found that the apparent rate constant of electron transfer decreases exponentially with the dry-state thickness of this layer. To investigate the electron transfer in the brushes themselves, scanning electrochemical microscopy (SECM) was applied, thereby allowing the effect from the initiator layer to be excluded. The unusual transition feature of the approach curves recorded suggests that an initial fast charge transfer to the outermost-situated ferrocenyl groups is followed by a slower electron transport involving the neighboring redox units.

15.
Chemphyschem ; 13(14): 3303-7, 2012 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-22786706

RESUMO

Scanning electrochemical microscopy is used to carry out local free-radical grafting at a gold surface through mild oxidation of an aryl hydrazine. The process can be deliberately controlled by creation of a local pH gradient at the tip. Comparison of the experimental results with simulations shows that the radial expansion of the pH profile in which successful grafting can be accomplished increases with increasing generation time of OH(-) and with decreasing initial concentration of the grafting precursor. Furthermore, the radial expansion is faster than the nucleation of the grafting process.

16.
Langmuir ; 28(25): 9573-82, 2012 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-22686253

RESUMO

Redox grafting of aryldiazonium salts containing redox units may be used to form exceptionally thick covalently attached conducting films, even in the micrometers range, in a controlled manner on glassy carbon and gold substrates. With the objective to investigate the mechanism of this process in detail, 1-anthraquinone (AQ) redox units were immobilized on these substrates by electroreduction of 9,10-dioxo-9,10-dihydroanthracene-1-diazonium tetrafluoroborate. Electrochemical quartz crystal microbalance was employed to follow the grafting process during a cyclic voltammetric sweep by recording the frequency change. The redox grafting is shown to have two mass gain regions/phases: an irreversible one due to the addition of AQ units to the substrate/film and a reversible one due to the association of cations from the supporting electrolyte with the AQ radical anions formed during the sweeping process. Scanning electrochemical microscopy was used to study the relationship between the conductivity of the film and the charging level of the AQ redox units in the grafted film. For that purpose, approach curves were recorded at a platinum ultramicroelectrode for AQ-containing films on gold and glassy carbon surfaces using the ferro/ferricyanide redox system as redox probe. It is concluded that the film growth has its origin in electron transfer processes occurring through the layer mediated by the redox moieties embedded in the organic film.

17.
J Am Chem Soc ; 133(11): 3788-91, 2011 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-21355553

RESUMO

Immobilization of submonolayers to 4-5 multilayers of organic molecules on carbon surfaces can be performed by in situ generation of aryl radicals from aryltriazenes. The central idea consists of oxidatively forming an electrogenerated acid of N,N'-diphenylhydrazine to convert the aryltriazene to the corresponding diazonium salt in the diffusion layer of the electrode. In a second step, the diazonium salt is reduced at the same electrode to give a surface of covalently attached aryl groups. In this manner, various moieties tethered to the aryl groups can be immobilized on the surface. Here a ferrocenyl group was introduced as redox marker, the electrochemical signal of which is extraordinarily well-defined. This behavior is independent of film thickness, the latter being easily controlled by the number of repetitive cycles performed. It is also demonstrated that the new approach is suitable for patterning of surfaces using scanning electrochemical microscopy.


Assuntos
Ácidos/química , Triazenos/química , Eletroquímica , Oxirredução , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...